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Over the past 25 years, industrial and organizational (I-O) psychologists
have made great strides forward in the area of teams research. They have
developed and tested meso-level theories that explain and predict the
behavior of individuals in teams and teams operating within and across
organizations. The continued contributions of I-O psychologists to theory
and research on teams require us to address the challenges—several of which
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were well described in the focal article (Guzzo, Fink, King, Tonidandel, &
Landis, 2015)—and embrace the opportunities that are being ushered in
by big and broad data streams (Hendler, 2013). We suggest that a principal
unique value add of the I-O psychologist to the basic scientific endeavor
of understanding small teams comes in the form of theory—theories that
explain why, when, how, and to what end individuals form relationships
needed for teams to function in unison toward the accomplishment of
collective goals. Some have argued that the big data revolution means “the
end of theory,” suggesting petabyte data render theoretical models obso-
lete (Anderson, 2008). On the contrary, we submit that big-data enabled
social science holds the promise of rapid progress in social science theory,
particularly in the area of teams.

As the focal article notes, big data about teams abounds, ranging from
traces left as teams form and perform in online communities (Turek,
Wierzbicki, Nielek, Hupa, & Datta, 2010) to big data from computer simula-
tions (Sullivan, Lungeanu, DeChurch, & Contractor, 2015) to big data from
wearable sensors (Kozlowski, Chao, Chang, & Fernandez, in press; Pentland,
2000). Simultaneously, the “little team” is now capturing the attention of
scholars in a wide range of fields and disciplines who are bringing big data
to bear on the very same phenomena that I-O psychologists have been
theorizing about and studying for decades. Climate scientists are engaging
teams research as they build cyberinfrastructure tools to integrate data,
tools, and methods from the disparate fields that study the land, sea, and air
(Jacobs, 2012). Biomedical scientists are engaging teams research as part of
a new field dubbed “The Science of Team Science” (Cooke & Hilton, 2015)
in order to design organizational work systems such as those that led to the
discovery of the Higgs boson (Aad et al., 2012) or the sequencing of the
human genome (Venter et al., 2001). Computer scientists are engaging teams
research to understand forms of human collaboration enabled by the digital
revolution such as peer production (Kittur et al., 2013;Wilkinson, 2008) and
collective intelligence (Smith, 1994). Like the big data revolution in general,
the engagement of these communities in the science of teams presents I-O
psychologists studying teams with both challenges and opportunities.

The reality is that big data has brought the study of “little teams” to a
crossroads. We wish to extend the discussion of big data to consider the
opportunities to better accomplish the thing that we, as I-O psychologists,
perhaps are the best positioned to do in the area of teams research: build and
refine theory. We explore four key opportunities that arise when I-O psy-
chologists pair their ability to develop, operationalize, and investigate social
science theory with big data.

First, data-intensive research will enable social scientists to test pre-
dictions that derive from major theories “at scale.” For example, the team
input–process–outcome (I–P–O) model was introduced to explain how
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certain inputs (e.g., team composition) could lead to team outcomes (Hack-
man, 1987; McGrath, 1984; Steiner, 1972). This model holds that team
processes are the mediating link between inputs and subsequent outcomes.
To date, hundreds of studies have tested team I–P–O relationships using
samples ranging from 1 to 1,000 teams. Virtual organizational science has
relied on this foundational thinking about teams (cf. Jarvenpaa, Shaw, & Sta-
ples, 2004; Lurey & Raisinghani, 2001; Martins, Gilson, & Maynard, 2004).
Newer models of team performance such as the input–mediator–output–
input model (IMOI; Ilgen, Hollenbeck, Johnson, & Jundt, 2005) suggest that
the factors linking team inputs and outputs are often constructs other than
behavioral processes, such as trust, cohesion, or shared cognition, which
emerge over time and manifest at the team level. The way these constructs
develop and shift over time is nonlinear and involves feedback loopswhereby
mediators and outputs at onemoment become inputs at another (Ilgen et al.,
2005).

However, team I–P–O and IMOI research has barely scratched the sur-
face of testing propositions about the influence of team context and environ-
mental pacers on team internal functioning. Scant attention has been paid to
exposing how processes unfold over time. To some degree, prior team the-
ory and empirical research was limited by atomistic data—data centered on
individuals or teams as entities. Measures of so-called “social behavior” and
“team process” have more closely resembled “individuals’ perceptions” than
coevolving behavioral repertoires. In contrast, big data is particularly useful
for studying team dynamics given that these data are inherently relational
and afford the investigation of more precisely specified relational theories
(Macy, DellaPosta, & Shi, 2015). Mapping the emergence and impact of pat-
terned team-level constructs over time (e.g., using implicit measures of rela-
tional constructs captured in real-time) is one way for research to delineate
the IMOI cycles through which teams function. We offer this as an illus-
tration of a key advancement that can be made possible by applying large-
scale, data-intensive, computational social science (CSS; Lazer et al., 2009)
approaches to teams theory.

Second, data-intensive research may well expose new boundary condi-
tions appropriate for incorporation into existing theories of teams. Over the
past 2 decades, the social sciences have increasingly utilizedmeta-analysis as
a technique for theory testing.Meta-analysis combines all available estimates
of an effect size from published and unpublished studies in order to iden-
tify the boundary conditions, or moderators, of a given relationship (Hunter
& Schmidt, 2004). In the past, this approach has proven particularly useful
in the area of teams (e.g., Bell, 2007; Mesmer-Magnus & DeChurch, 2009),
given that access to large samples of teams data is typically untenable. A ma-
jor limitation of relying on meta-analysis to understand teams, however, is
that we are stitching together small data to construct big data, often with
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little knowledge of sources of variation between samples. CSS approaches,
unfettered by small sample constraints, afford teams researchers a new way
to chart the boundaries of their theories.

Third, data-intensive research invites new combinations of constructs,
and the entry of altogether new constructs, into our theory space. For ex-
ample, advancements in neuroimaging and sensor data are opening up the
possibility that we can incorporate new constructs such as the “fluidity of
team membership” (i.e., how and with whom collaboration occurs), “vir-
tual proximity” (i.e., how reachable individuals are throughout the day), and
“dominance” (i.e., a “protagonistic characteristic” influence over others in
order to balance participation and derive consensus; Kim, McFee, Olguin,
Waber, & Pentland, 2012).

Fourth, there are bound to be entirely new phenomena identified
through the use of big data. Thus, new theories about collaboration are
needed to focus our attention on new or at least increasingly prevalent phe-
nomena. An example of such a phenomenon is a virtual community (i.e.,
MediaMOO, Wikipedia) in which users come together voluntarily to con-
nect and collaborate (Keegan, Gergle, & Contractor, 2012). With nothing
more than a basic infrastructure in place, it is the users who develop the en-
vironment (Bruckman, & Resnick, 1995; Bryant, Forte, & Bruckman, 2005).

To recap, big data combined with computational social science methods
(Lazer et al., 2009) will define the future of teams research. The increasingly
available digital streams afford an unprecedented and unparalleled oppor-
tunity for teams research. However, continuing to contribute to research on
teams will require I-O psychologists to address the inherent challenges of
big data and embrace the opportunities ushered in by big and broad data
streams. Furthermore, the impact of data-intensive research in teams re-
search can, perhaps, be seen most clearly when we consider the implications
for teams theory.
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In this response to Guzzo, Fink, King, Tonidandel, and Landis (2015), we
suggest industrial–organizational (I-O) psychologists join business analysts,
data scientists, statisticians, mathematicians, and economists in creating the
vanguard of expertise as we acclimate to the reality of analytics in the world
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